Skip to main content

Data Sources

To ease interacting with the CARTO platform, the CARTO deck.gl module includes a number of functions, which simplify the use of fetching your data from CARTO. At a high level these can be thought of as wrappers around the browsers fetch function, except that rather than passing a URL, options that specify the data in the CARTO are used.

Overview

The data source functions are a compact way to describe the data that you want to fetch. For example, to fetch a table from a data warehouse from the connection carto_dw:

import {vectorTableSource} from '@deck.gl/carto';
const data = vectorTableSource({
accessToken: 'XXX',
connectionName: 'carto_dw',
tableName: 'carto-demo-data.demo_tables.chicago_crime_sample'
});

Promise API

All data source functions return a Promise, which can be resolved to obtain the actual Tilejson. However, as the core deck.gl Layer prop supports Promises, it is often not necessary to resolve or await the Promise and the data source can be directly passed to the data prop:

import {H3TileLayer, h3TilesetSource} from '@deck.gl/carto';
new H3TileLayer({
data: h3TilesetSource({
accessToken: 'XXX',
connectionName: 'carto_dw',
tableName: 'carto-demo-data.demo_tables.h3_data'
}),

getFillColor: d => d.properties.color
});

Types

All the data source functions are fully typed, to aid in providing the correct parameters and working correctly with the return value.

Caching

The dataSource functions have an internal cache, which avoids fetching data from the server if the parameters have not changed. Thus they can be used, for example, in React render() functions without needing memoization.

Available Data Sources

All data source functions take the following global options:

type SourceOptions = {
accessToken: string;
connectionName: string;
apiBaseUrl?: string;
clientId?: string;
headers?: Record<string, string>;
maxLengthURL?: number;
};

In addition, the following options are supported on each source:

vectorTableSource

type VectorTableSourceOptions = {
columns?: string[];
spatialDataColumn?: string;
tableName: string;
};

vectorQuerySource

type VectorQuerySourceOptions = {
spatialDataColumn?: string;
sqlQuery: string;
queryParameters: QueryParameters;
};

vectorTilesetSource

type VectorTilesetSourceOptions = {
tableName: string;
};

h3TableSource

type H3TableSourceOptions = {
aggregationExp: string;
aggregationResLevel?: number;
columns?: string[];
spatialDataColumn?: string;
tableName: string;
};

h3QuerySource

type H3QuerySourceOptions = {
aggregationExp: string;
aggregationResLevel?: number;
spatialDataColumn?: string;
sqlQuery: string;
queryParameters: QueryParameters;
};

h3TilesetSource

type H3TilesetSourceOptions = {
tableName: string;
};

quadbinTableSource

type QuadbinTableSourceOptions = {
aggregationExp: string;
aggregationResLevel?: number;
columns?: string[];
spatialDataColumn?: string;
tableName: string;
};

quadbinQuerySource

type QuadbinQuerySourceOptions = {
aggregationExp: string;
aggregationResLevel?: number;
spatialDataColumn?: string;
sqlQuery: string;
queryParameters: QueryParameters;
};

quadbinTilesetSource

type QuadbinTilesetSourceOptions = {
tableName: string;
};

rasterTilesetSource (Experimental)

type RasterTilesetSourceOptions = {
tableName: string;
};

Boundary sources are experimental sources where both the tileset and the properties props need a specific schema to work. Read more about Boundaries in the CARTO documentation.

boundaryTableSource (Experimental)

type BoundaryTableSourceOptions = {
tilesetTableName: string;
columns?: string[];
propertiesTableName: string;
};

boundaryQuerySource (Experimental)

type BoundaryQuerySourceOptions = {
tilesetTableName: string;
propertiesSqlQuery: string;
queryParameters?: QueryParameters;
};

QueryParameters

QueryParameters are used to parametrize SQL queries. The format depends on the source's provider, some examples:

PostgreSQL and Redshift:

vectorQuerySource({
...,
sqlQuery: `select * from users where username=$1`,
queryParameters: ['my-name']
})

BigQuery positional:

vectorQuerySource({
...,
sqlQuery: `select * from users where username=$1`,
queryParameters: ['my-name']
})

BigQuery named parameters:

vectorQuerySource({
...,
sqlQuery: `select * from users where username=@username`,
queryParameters: { username: 'my-name' }
})

Snowflake positional :

vectorQuerySource({
...,
sqlQuery: `select * from users where username=?`,
queryParameters: ['my-name']
});

or

vectorQuerySource({
data: `select * from users where username=:1`,
queryParameters: ['my-name']
});

Databricks ODBC

vectorQuerySource({
...
data: `select * from users where username=?`,
queryParameters: ['my-name']
});